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Equipartition and Rate of Energy Exchanges 
in a Model of a Radiant Cavity 
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Results of calculations on a model of a radiant cavity, performed in order to 
explore the relation between stochasticity and geometrical structure of phase 
space, are presented. The rate of energy exchanges, as indicator of stochasticity, 
is found to be quite effective. Furthermore, a trend to equipartition for such a 
quantity is observed at increasing energy, and this implies an increasing rigidity 
of high harmonic modes also in the stochastic regime of motion. Such a feature 
may be correlated to the shape of the spectrum which characterizes the radiant 
cavity with respect to nonlinear chains. 

KEY WORDS: Energy exchanges; equipartition; nonlinear dynamics; 
radiant cavity; stochasticity. 

1. I N T R O D U C T I O N  

There exists a broad spectrum of attempts ~m~ to join dynamics and the 
geometry of phase space of dynamical systems, in order to have a better 
insight into the mechanism of the onset of stochasticity. A number of 
unsolved questions can profit from this: for instance, the relevance of 
KAM theory in the thermodynamic limit and the relations between ther- 
modynamic and continuum limits. In refs. 2, classical examples of finite 
one-dimensional nonlinear chains have been studied by introducing, among 
other quantities, the rate of energy exchanges of normal modes, and it has 
been shown that a strict correlation exists between the behavior of this 
parameter and stochasticity; moreover, such a correlation may be inter- 
preted in terms of the geometrical complexity of phase space. Since the 
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present work extends the approach of refs. 2 in a qualitatively different 
context, some notations and results will be recalled here. 

For a Hamiltonian system consisting of N harmonic oscillators one 
introduces normal mode coordinates {al . . . . .  a x;` i l , . . . ,  ,iN } and action-angle 
variables {Jl,-.-, JN; Ot,"', ON} in such a way that the harmonic part H ~ of 
the Hamiltonian function may be written as 

= (nna,) -- conJn E + _ 

n = l  n = l  

The system with Hamiltonian H ~ is integrable, i.e., there exist N integrals 
of motion, the energies of the modes, which are in convolution, and the 
whole of phase space is continously foliated by the invariant surfaces 
(N-tori) determined by these integrals. Since the energy of the nth mode is 
E, = co,J,,  it follows that/~n = 0 and ) ,  = 0 for the harmonic chain. For a 
nonlinear system of coupled oscillators with Hamiltonian H = H ~ + V, the 
variations of the harmonic actions are connected to the deformation or 
breaking of these surfaces, and it may be conjectured that the increasing 
complexity of the trajectories in phase space may be used as a stochastic 
parameter. The onset of stochasticity, in particular, should influence 
suitable quantities based on the time behavior of the actions, or, more 
generally, on the geometrical features of the trajectories. 

Such conjecture has been checked in refs. 2 with several techniques, 
and, in particular, by studying the quantity f r  = Var(( I )1])  r,'", ([)NI)T), 
where ( . ) T  denotes the time average up to time T, namely, for any 
integrable function f ( t )  

( f ) r = l  f :  f(t)dt (1.1) 

and Vat(--.) denotes the variance of its arguments. The IJ,] are the 
absolute values of the time derivatives of the harmonic action variables Jn" 
For the harmonic chain, since ) , -  0, one has Y'r = 0. For an anharmonic 
chain, in the ordered region of phase space the value of WT depends on the 
initial conditions. What is important for our purposes is that Y'T proves to 
be very sensitive to the stochastic transition and may be used in turn as an 
efficient indicator of stochasticity. This means the following: consider a 
system such as the Lennard-Jones chain, which is known to undergo a 
transition to stochasticity at a value u" of the specific energy u, in the sense 
that for u > u C the motion is chaotic. Then, coherently, it happens that 
when u > u c one finds Y'r-~ 0 for T ~  oo independently of the initial 
conditions. This limit for s r and the relation ( ] /~ , [ )=  ~o,(1),] ) imply 

([)n[)  = const, (]/~nl) occon (1.2) 
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where ( . ) = l i m T _ ~  (-)7-. As usual in these studies, the limit to ~ is to 
be understood as an inference from clear numerical evidence. 

The results summarized by (1.2) admit a geometrical interpretation: in 
the highly stochastic domain, mean equipartition among the ([J~[) means 
that the orbits run with the same mean velocity in the whole of phase space 
spanned by the action variables, and this is an index of homogeneous 
disorder. 

In refs. 2, the picture of high complexity of the geometry of phase 
space has been confirmed through the study of other observables, namely 
the variance of the curvature along the trajectory and the variance of the 
microcanonical density. The analysis of these further quantities gave 
evidence of the following phenomena: first, the thermalization corresponds 
to a drastical increase of the geometrical complexity of orbits; second, a 
domain of low stochastieity may be detected, where the system behaves as if 
there were a trapping effect of residual invariant surfaces on trajectories 
during finite time observations. We shall not be concerned here with 
curvature and microcanonical density, because of the neater numerical 
evidence obtained through the rate of energy exchanges, which is also 
easier to compute. 

Since for anharmonic chains the frequency spectrum is bounded as 
N ~  ov by a finite value ~oo~, formula (1.2) does not present any a priori 
difficulty in the thermodinamic limit. Such considerations cannot be 
trivially extended to systems with unbounded spectrum. Typically, for a 
field where conocn, formula (1.2) would imply a divergence in the energy 
exchanges among the modes. The freezing of high modes appears in such a 
case as a "physical" necessity, and one may wonder which form the depen- 
dence of the thermalized ([/~,l) on the frequencies will assume. 

Our purpose here consists precisely in extending the approach of 
refs. 2 to an infinite system with an unbounded spectrum. We have chosen 
the model of a radiant cavity introduced in ref. 3 and studied, for example, 
in refs. 4-6. The interesting features of this system are the following: (1) it 
admits a Hamiltonian description, which enables systematic analogies and 
comparisons with nonlinear chains; (2) it exhibits the phenomenon of a 
stochastic transition characterized by the existence of thresholds in the 
energies of the modes; (3) it offers certain possibilities of studying the 
limiting properties when the number N of degrees of freedom goes to 
infinity. 

Statements 1-3 above should be taken, at this point, in some naive 
sense. As usual for numerical studies, the definite meaning and the semantic 
bounds of such key words as equipartition, stochastic transition, etc., will 
arise quite naturally from the context. In particular, the main points 
investigated here, i.e., the influence of the shape of the spectrum on the 
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relaxation and the relation between the dynamical regime of motion and 
the geometrical features of phase space, appear from our considerations to 
be meaningful independently of a complete mathematical formulation of 
the statistical mechanics of infinite systems. 

The problem above, indeed, will be approached in the present paper 
mainly through numerical methods. The behavior of each mode will be 
considered with respect to both the energy distribution and the rate of 
energy exchanges. This last is clearly the main object of investigation, while 
computations on the energy distribution are essentially meant to recover 
known criteria of stochasticity and to support our results by methods 
which are widely checked. The time scale of different observed phenomena 
will enter as a fundamental observable in itself. 

Obviously, the numerical calculations are performed for a system with 
a finite number of degrees of freedom (mostly N=25) .  However, at the 
highest values of energy and evolution time chosen for the experiments, the 
high modes (e.g., those with n > 19) are still frozen. Under such conditions, 
as it will be explained in the next section, our experiments simulate a 
system with infinitely many degrees of freedom. 

The reason why we study the behaviors of several modes separately, 
instead of their variance as in refs. 2, is that here, in principle, there are 
infinitely many modes and the value of the variance is drastically influenced 
by the maximal N chosen. In any case, the analysis on individual modes 
enables systematic comparisons with formula (1.2). What actually results 
from our computations is that, for thermalized modes, one has 

( lEvi)  = const, <lJ~l )<1/c% (1.3) 

The mutual relation between the limit for T ~  oe and the thermalization 
process remains an open problem, as it will be discussed in Section 4. 

Now, taking into account the recalled geometrical interpretation of 
(1.2), the comparison with (1.3) clearly indicates that, when the spectrum is 
unbounded, in the very stochastic domain there exists a clear qualitative 
difference in the geometric structure of the space: in this case, in fact, the 
mean absolute velocity of a harmonic action is inversely proportional to its 
frequency. So, not only are high modes more and more difficult to excite, 
but, also when thermalized, their motions preserve a sort of "rigidity" of 
the space: ( I ) , l )  represents indeed the absolute velocity of the nth radius 
of the unperturbed torus, which is identically 0 for the harmonic system. 

In Section 2 we present the model along the lines of ref. 5, which 
enables us to avoidrthe reduction to a finite system (even if we treat only a 
finite number of observables). In Section 3 we describe the numerical 
experiments, and finally in Section 4 comments and conclusions are given. 



Energy Exchanges in a Radiant Cavity 365 

2. T H E  M O D E L  

The physical system we are interested in was introducea and described 
in ref. 3. It consists of a uniformly charged plate which moves between two 
parallel and perfectly reflecting mirrors. The motion is parallel to the 
mirrors, midway between them. Taking the Y Z  axis on the plate and the Z 
axis along the motion, and considering the Coulomb gauge, one can write 
the equations for the z component of the vector potential A ( x ,  t) and for 
the coordinate z ( t )  of a reference point on the plane: 

02Az 1 02Az 4~ 
. . . .  aa(x) c3x 2 c 2 0t 2 c 

ms = - - - -  ~Az (0, t) + F(z )  
c Ot 

(2.1) 

A~( - l, t) = Az ( l  , t) = 0 (2.2) 

Here c is the velocity of light, m and a are the mass and the charge den- 
sities, 2l is the distance between the mirrors, and the Dirac 6 function is 
connected to the "infinite" ratio between l and the thickness of the plate. 
F(z)  represents a mechanical restoring force, which throughout this work 
will be assumed to be 

F( z ) = - m~z  3 (2.3) 

An additional linear term of the form - m o ~ z  has been shown in ref. 5 to 
be qualitatively uneffective. Equations (2.1) will be solved with the initial 
conditions discussed in the next section. 

The field A zwill now be transformed into an infinite system of coupled 
oscillators, by introducing the normal mode coordinates an. The functions 
cos co,x/c,  where c o , = n ~ c / 2 l  and n is odd, are a complete basis for 
summable functions satisfying the boundary conditions (2.2). Therefore, 
one can expand the field as 

Az(X, t) = ~ '  a , ( t )  u , ( x )  
n ~ l  

where u , ( x ) =  2c(~/ l )  1/2 cos co,x/c  and Z '  means the sum over the odd 
terms only. One obtains then the equations 

f i ,+coZa ,  = 2 ( ~ / l )  ~/2 a~ ( n=  1, 3, 5,...) 

,24, 
e = - 2  n21; 6 n - -  ~Z 3 
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The total energy of this system is given by 

1 2 ~ '  1 E=~rn~ + V(z)+ E,, E n = ~ ( a ~ + c o ] a  2) 
n = l  

(2.5) 

Note that the variables used here are not canonical; field-charge 
interaction terms appear, however, if such variables are used. With the 
standard technique already illustrated in ref. 5, one expresses the an as a 
sum of a particular integral and the solutions a ~ of the associated 
homogeneous equations, the initial conditions being imposed on the latter. 
Then one substitutes the an in the second of (2.4), obtaining an integro- 
differential equation for z(t). The simple identity 

0o 

~'  fa f ( t )  n~t a cos -~a = 2 [ f (0+  ) + f ( 0 - ) ]  
n ~ l  - - a  

allows one to rewrite the system (2.4) in the form 

iin+oo]an=2(=/l) 1/2 a~ ( n =  1, 3, 5,...) 

a,) (2.6) 
( / )  1/20- ~ '  a0 ( t )_2 rca2 [~ ( / )+  2 ~, ( - - 1 ) k z ( l - - 2 - ~ ) l - - ~ z 3  

m n=l mc k=l 

where I(t) is the integer part of tc/2l and t > 0 (modifications for t < 0 are 
obvious). 

The systems (2.4) and (2.6) are equivalent, but as far as one considers 
only a finite number N of modes (M of them initially excited), the 
approximate systems behave differently: system (2.4) is conservative at any 
finite N, but the behavior of the single nth mode depends on N; on the con- 
trary, the N approximation to the system (2.6) is not a conservative one, 
because the terms in ~ contain contributions from all the modes, but it has 
the advantage that the single modes may be computed independently from 
each other and from N. Since we are concerned with the behavior of single 
modes, we proceed by solving system (2.6). (In our computations modes 
with n > N are always frozen, i.e., they do not absorb energy, so that the 
N-dimensional approximation is also conservative). 

With the rescalings 

l 7t 14 
~ n = c % - = n 2  ' c  c7=e77 

(2.7) 
 o=e~ 

m c  2 '  m c  2 
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and introducing the dimensionless parameters  

2r i l e  2 

7 : m c  2 

1 / ( - ~ )  1/4 ~ ( / ~ ,  
/~ = _ _  _ _  = 1 / 4  

7 c  

and the new dimensionless variables 
c an z 

z = 7  t, bn = l(m~)l/------- S ,/2, w = /(/~)1/2 
~ ] 

one obtains the final equations 

~. + &~b. = (27) m 

~ = - ( 2 , )  1/2 ~ '  b ~  
n = l  

(2.8a) 

(2.8b) 

7 2 (2.9) 

1(,) (2.10) 
+ 2 ~ (--  1)k ~( r  - 2 k ) l  - e4w 3 

k = l  

0 . 5 ~  

0 . 0  ~ "  

I" . . . . . . . .  t . . . . . . . . .  I . . . . . . . . .  r . . . . . . . . .  t . . . . . . . .  
0 12 15 T I M E  20 

Fig. 1. Time behavior of (~,)r ,  n=3 17 with s=4. Time is expressed in integration 
steps/10 6. Modes 9 and 7 are initially excited. At the right-hand side, from the top: modes 9, 7, 
3, 5, and 11-17. 

8 2 2 / 5 4 / 1 - 2 - 2 4  
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Having scaled our unknowns with the square root of the energy, the 
energy itself is replaced by a quantity scaled to the fixed value t. More 
precisely, the new "energy" will satisfy the constraint 

1[-1.2 ~ 4 ~,1 ] 1=-'~5W "Jr"-~W4"JF 5(b2n.q-(70262n) (2.11) 
11=1 

which is the rescaled form of Eq. (2.5). Consistently with Eq. (2.11), in the 
following by "energies" of the modes we mean the quantities 

g ,  = ( 1 / 2 7 4 ) ( b ] +  - 2  2 %b.)  = P.,/~= E,/E (2.12) 

Of course, the initial conditions will take into account such constraint. 
For a fixed e in Eqs. (2.10), the actual energy is obtained from Eq. (2.8b) 
once the parameters of the model (i.e., ~ and 7) have been fixed. 

0.5" 

Fig. 2. 

o.o ir ~ I 

o 4 8 12 16 T I M E  20 

The same as in Fig. 1, with e = 10. At the left-hand side and from the top: modes 9, 7, 
3, 5, 13, 17, and 15. At the right-hand side: 13, 9, 5, 3, 11, 7, 15, and 17. 
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3. N U M E R I C A L  E X P E R I M E N T S  A N D  RESULTS 

(i) Computer specifications: Most of the numerical experiments 
have been performed on CRAY X MP 12 and CRAY X MP 48 mainframes 
(CINECA, Bologna). Equations (2.10) have been integrated by a leapfrog 
method in double precision. A typical value for the integration step of the 
time ~ is 0.0005. The scales of this "time" are fixed by the periods of the 
considered modes as given by the frequencies c~, [-see (2.7)]. In the worst 
case we have 2n/cb25 -- 0.16 (about 320 steps per period). The maximal con- 
sidered T consists of 2 • i 0  7 steps, and corresponds to more than 2500 of 
the longest periods (N = 1). Actually, we have the same T as in ref. 5 but 
with an integration step ten times smaller [see also point (viii) below]. 
Several checks of stability have been performed. 

(ii) Parameters: The value of z has been chosen 0.2n (as in ref. 5, for 
the sake of comparison), but a number of experiments have been perfor- 
med by varying this value, in order to show the role of the plate in the 

o, 7 

O , O -  

i l l ,  , I  1 , 1 1 1 l ,  l l l , ,  , l  , I l l  , , ,  , l  i ,  1 , ,  , l , l e l l , ,  , l  , , , i i  

4 8 12 16 TIME 21:) 

Fig. 3. The same as in Fig. 1, with e = 16. At the left-hand side, from the top: modes 7, 9, 3, 
5, and the others nearly together. At the right-hand side: 9, 7, 5, 17, 13, 15, 3, and 11. 
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sharing of energy. As to 5, it represents the order parameter with respect 
to which we investigated the model. We note that, according to 
definition (2.8b), variations of 5 admit two interpretations: variations of 
initial energy ~ at fixed nonlinearity ~, or variation of nonlinearity $ at 
fixed energy E. Furthermore, 5 4 will represent directly L: for fixed ~ equal to 
74 (resp. ~ for fixed E equal to 74). 

(iii) Initial conditions: We have given 5% of the energy to the plate, 
and the remaining part equipartitioned among bunches of modes (up to 
nine, but typically two, with N = 25). 

(iv) Experiments: A first series of computations has been devoted to 
checking the trend to equipartition of energy in such a way as to recover 
the stochastic transition already studied by other authors and, with 
reference to it, to study the rate of energy exchange. Typical outputs are 
shown in Figs. 1-6, with the time averages (for ( ~ , ) r  or (1~ , [ ) r )  versus 
time expressed in integration steps, for low and high energies, with a bunch 

0.026- 

G.O- 
S _  
' i l l  q J l l l i t  I [ l l  I l l  I t  I I  i l  i l ~ t l ] i  I I I  l i  ~1 l l l t l t ~ l l l l  ~ 

8 12 16 TI ME 20 

Fig. 4. The same as in Fig. 1, for <1~~ >r with e=4. At the left-hand side, from the top: 
modes 9, 7, 5, 3, 11, and the others together. At the right-hand side: 13, 9, 3, 5, 11, 7, 15, 
and 17. 
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of two modes (7 and 9) initially excited. The high-energy cases clearly show 
a tendency which hereafter we shall recognize as "equipartition." At inter- 
mediate energy, such a tendency appears only for the lower modes: for 
these, the sharing of available energy is faster. 

An instructive way of collecting the results is shown in Fig. 7, where 
the distributions of (gn)T at Tma x a r e  plotted versus e, i.e., versus energy. 
This figure confirms that, within a fixed time of observation, equipartition, 
up to a certain mode takes place only for a sufficiently large energy. In 
these conditions the energy works therefore as a critical parameter, roughly 
defining a threshold of stochasticity. Now, it results from the corresponding 
Figs. 4-6 and 8 that the same happens for ([~1)Y. In the same sense as the 
extrapolated behavior for T ~  oe lead to (1.2) for nonlinear chains, one 
obtains now that ( [~ ,1 )=  const, which, for nonscaled variables, may be 
written as 

(I/Enl) = const, ( I J n ] ) <  1/co, (3.1) 

0 .0 .  

0 ; 8 12 16 T IM E 20 

Fig. 5. The same as in Fig. 4, with e = 10. At the le•hand side, from the top: modes 9, 7, 3, 
5, 13, 11, 15, and 17. At the right-hand side: 13, 9, 3, 5, 11, 7, 15, and 17. 
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This constitutes our main result, as mentioned before in (1.3). The rate of 
energy exchange is therefore sensitive to the stochastic transition, and 
could be used in turn as an indicator of stochasticity. Recalling that the 
same happens for one-dimensional chains, we stress two main differences: 
in that case (1) equipartition takes place for actions, and (2) the 
phenomenon regards the nonlinear chain as a whole, not a group of modes 
up to a certain N. 

(v) In system (2.10) the equations for the modes b n can be solved 
separately after solving the equation for w. Therefore there is no cutoff 
approximation in the analysis of the first N modes. We remark that higher 
and higher modes would appear in all the figures with flatter and flatter 
curves. For Figs. 2 and 3 and Figs. 5 and 6 in particular, the first omitted 
modes begin to be excited and contribute to the energy balance. Such a fact 
should be taken into account in speaking of equipartition at high values of 

in Figs. 7 and 8. 

0.025" 

0.O 

0- ~ 8 12 16 TIME 20 

Fig. 6. The same as in Fig. 4, with e = 16. At the left-hand side, from the top: modes 7, 9, 5, 
3, 13, 15, 11, and 17. At the right-hand side: 17, 7, 9 and 13, 5, 15, 3, 11. 
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(vi) The influence of the other parameter  7 has been studied and 
gives the expected results. Since 7 represents the strength of the interaction 
between the plate and the field modes, an increase of 7 increases the energy 
exchanges between the modes, with the same qualitative pattern as with an 
increase of energy (through e) at fixed 7- This behavior has been checked 
with values of 7 double and half of the reference value. 

(vii) Several experiments have been performed by varying the initial 
center of the bunch of excited modes, and the number of initially excited 
modes: these changes of the initial conditions confirm the results of point 
(iv), with obvious variations in the different "inertia" to the thermalization 
of the frequencies. 

(viii) We have done some "long" calculations with 10 s steps, i.e., five 
times the previous ones. The trends of the curves are confirmed (see Figs. 9 
and 10). 

0_5-- 

0 . 6 - -  

Fig. 7. Values of (d~n)r at final T plotted versus ~. The role of e in the thermalization 
process is clearly shown. The wider spreading at e = 16 is only apparent, due to the increasing 
influence of the higher modes not drawn in the figure. 
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4. C O M M E N T S  A N D  C O N C L U S I O N S  

The results described above lead to the following conclusions. 

1. Exchanges of energy between modes are confirmed to be strictly 
related to the dynamical regime of motion, as in one-dimensional chains 
already studied. Indeed, within a fixed time, one observes a similar trend to 
equipartition for the energies and their exchanges. 

2. We have an answer to the initial problem about the possible 
relation between the equilibrium value of energy exchanges and the spectra: 
while in one-dimensional chains there was the extrapolated dependence 
( I/;. [ ) oc on, in the limit T ~ ~ ,  we have now ( 1~;, I ) = const in the same 
sense. The physical paradox implied by relation (1.2) for systems with 
unbounded spectra is solved by the fact that (t.2) is replaced in the present 
case by (3.1). It would be an interesting point to find out if this new 
"equipartition" relation is of general validity in the case of unbounded 
spectra, as we tend to believe, or if it is just a feature of the particular 
model studied here. 

Fig. 8. 

Q.025-- 

0 . 0 - -  

Values of (1~,])r at final T plotted versus e. The remarks in the legend to Fig. 7 
apply also here. 
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3. The results may be rephrased in a geometrical language, recalling 
that the averaged velocities of the "actions," given by (I/~,1)/o9,, are 
proportional to 1/o%, and that therefore the equipartition of energy 
exchanges implies higher and higher "rigidity" for higher and higher modes. 
We speak of rigidity because, for unperturbed oscillators, the absolute 
value of the nth action variable gives the nth radius of the invariant torus, 
and the rate of change of this radius roughly represents its instability. We 
stress the fact that all this refers to the stochastic regime, and not to the 
ordered one. 

As recalled in the Introduction, for nonlinear chains it is possible to 
distinguish between order, low stochasticity, and high stochasticity, just 
referring to the degree of complexity of orbits in the phase space and to the 
possibility (in the low stochastic regime) of the appearance of a trapping 
effect. The latter essentially consists, at a fixed energy, in a strong depen- 
dence of the relaxation time on the initial conditions. Turning to our 

0.5-  

0.0-  
, i i i i  i ~ I L l  I t  

20 .~0 60 90 T I M E  100 

Fig. 9. Long calculations. Time behavior of ( 8 , ) r ,  n = 3-17 with e =  10. Time is expressed 
in integration steps/2 • 10 6. The same as in Fig. 2 with the time of integration five times 
longer. The intermediate dots correspond to the final data  of Fig. 2. 
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system, it is possible on one side to assert that a high stochasticization in 
the sense of nonlinear chains is impossible, because of (3.1), which "freezes" 
the high modes also in their thermalized phase; therefore the equipartition 
situation should be classified as a low stochastic one. But, on the other 
side, it is now particularly difficult to give evidence of trapping phenomena 
and of correlations with direct geometrical features of the orbits: both these 
subjects seem indeed to require a prohibitive amount of computations. 

4. Points 1 and 2 depend strongly on the choice of various para- 
meters [as said in point (vi) above], but the most delicate element is the 
total time of observation. The figures illustrate, in general, that a shorter 
T could lead to different conclusions, in the sense that the trend to 
equipartition could not be recognized as such. One may reasonably expect 
that for larger T more and more frozen modes will be excited to equipar- 
tition at a lower value (this expectation is confirmed by "tong" calculations; 
see Figs. 9 and 10). An obvious question arises: for a fixed energy and a 
fixed number of modes, does there exist a time T such that equipartition 
(both in energy and rate of exchanges) is reached within T? If yes, this 

0.025 - 

t 
0 .0-  

20  &O 60 80 T iME  100 

Fig. 10. Long calculations. The same as in Fig. 9, for (ld',l)r. To be compared with Fig. 5. 
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would imply that every finite amount of energy tends to be shared, in a 
sufficiently long time, by the field as a whole. Another possibility is that, for 
the nth mode, there exist a critical value E~ such that for every time T the 
mode cannot be thermalized if the total available energy is less than E~. 
Our computations cannot give a definite answer, but strongly support the 
evidence of a very fast growth of the relaxation time for thermalization. 
Once again, we remark that this problem is distinct from the one discussed 
in point 3, referring to already thermalized situations inasmuch the 
constant of (3.1) is different from zero. 
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